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Abstract
Text-to-image generation is a multivariable process in which the
resulting quality is determined by both the generative model and
the input prompt. While previous efforts rely on a single model
either by enhancing its capability or by reformulating prompts, we
point out that no single model excels at handling all types of tasks,
as there exist inter-model and intra-model quality variance induced
by the difference in types of prompts. This paper explores the rela-
tionship between the generation quality of text-to-image models
and the linguistic features of input prompts by measuring the per-
formance of state-of-the-art models using five different prompt
datasets each with its distinctive features. Motivated by our empiri-
cal observations, we propose a novel approach that assigns each
prompt to its best-performing model based on quality prediction.
This enables utilizing a diverse set of models each with its expertise
and cost, thereby enhancing cost-effectiveness. Evaluation results
show that our approach can reduce the total generation cost by
29.25% with comparable or even higher generation quality than
using only the single best model.
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• Information systems → Multimedia information systems.
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1 Introduction
Recent studies on text-to-image generation and the unprecedented
capabilities of state-of-the-art models have enabled users to visual-
ize their wants based on prompts, which are instructions given as
textual descriptions of the target image. With myriads of text-to-
image models available today, diverse factors affect their resulting
quality, such as the model capability and the linguistic features of
the prompt. We point out that no single model excels at all types
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Figure 1: Quality measurement of images generated from
diverse text prompts. Both aesthetic quality (NIMA Score)
and text-image alignment (CLIP Score) shownotable variance
along with the difference between model performance.

of tasks due to inter-model and intra-model quality variance induced
by the difference in types of prompts, envisioning opportunities
for enhancing cost-effectiveness that are yet unexplored.

The main reasons for inter-model quality variance are twofold:
model properties and training data. Many text-to-image models
use pre-trained language models (e.g., T5 [21] or CLIP text encoder
[20]) to extract text embeddings from input prompts and are com-
posed of diverse generative models such as generative adversarial
networks (GAN) [15, 25, 30], diffusion models [4, 22, 23], autore-
gressive models [5, 33], or masked image models [2, 17] that process
those embeddings in latent space for conditional generation. In ad-
dition to these differences between pipeline components, types and
distribution of training data may vary, leading to different domain
generalization and zero-shot transfer abilities. It is worth noting
that the model parameter size [8, 33] also affects these capabilities.
Overall, the model performance depends on how it is shaped and
trained, resulting in varying generation quality across text-to-image
models even with identical generation requests.

Alongside the quality variance among models, a single model
may also show variance in generation quality, i.e., intra-model qual-
ity variance, depending on the type of task. As shown in Fig. 1,
all models show notable variance in generation quality regardless
of their average performance. While SDXL-Turbo shows the best
performance “on average”, this does not necessarily mean it excels
at handling all types of text prompts. For example, among the five
evaluation benchmarks we examine, TAESD marks the highest
proportion in generating images with better quality than all other
models when given prompts from MS/LN-COCO, 10.38% and 4.48%
more times than SDXL-Turbo, respectively (cf. Sec. 2.2).

Therefore, text-to-image generation is a multivariable process
in which quality is determined by both the model that handles
the generation request and the features of the request (i.e., text
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Table 1: Statistics of evaluation benchmarks.

Benchmark Number of
Prompts

Number of Words / Prompt
Min. Max. Avg. (𝜇 (±𝜎))

MS-COCO [11] 31,427 6 45 10.46 (±2.41)
LN-COCO [19] 8,573 6 181 40.45 (±18.75)
DrawBench [24] 200 1 51 11.68 (±9.62)
PartiPrompts [33] 1,632 1 67 9.12 (±7.34)
DiffusionDB [32] 8,168 1 217 24.31 (±16.10)

prompt) itself. Previous efforts on enhancing generation quality
have focused solely on reformulating prompts [6, 12, 34], relying
on a single model that is believed to be an all-rounder. Still, there
are opportunities for further optimization as models with a smaller
number of parameters, hence at a lower cost, may generate images
with comparable or even better qualities for certain types of tasks.
Utilizing these models each with its expertise leads to improved
cost-effectiveness in the overall text-to-image generation process.

Motivated by empirical observations on prompt-level generation
quality that varies both inter-model and intra-model, we propose
a novel approach that assigns each prompt to its best-performing
model based on quality prediction. For each generation request,
we select the model that will generate an image with the highest
quality based on the linguistic features of the given prompt. This
enables utilizing a smaller, inexpensive model with less diversity
in generation but excels at its expertise. Although there have been
studies on utilizing performance variance among large language
models (LLM) [3, 31], our work is the first attempt to apply this
methodology in the field of text-to-image generation.

We measure the performance of state-of-the-art models using
diverse evaluation benchmarks to study the feasibility of utilizing
multiple models with varying capabilities and costs. We evaluate
the effectiveness of our approach using different quality metrics and
model selection strategies. Our results show that assigning each
generation request to the most suitable model can reduce the total
cost by 29.25% on average while generating images of which the
overall quality is in line with the model of the highest performance.
The major contributions of this work are summarized as follows:

• To the best of our knowledge, we are the first to utilize
prompt-level quality variance among text-to-image models
to enhance cost-effectiveness in image generation.

• We provide an empirical analysis that shows inter-model
and intra-model quality variance according to the linguistic
features of input prompts.

• We propose a novel approach that selects the best model
for each prompt based on its linguistic features. Evaluation
results show that this can reduce total generation cost by
29.25% with comparable or even higher quality outcomes.

2 Data Analysis: Input Varieties and Quality
Variance

We begin by showing the results from studying quality variance
induced by varieties in text prompts. Our results show the feasibility
of utilizing multiple models with different capabilities and costs.

Table 2: Performance comparison between text-to-image
models used in our experiment: generation quality, infer-
ence speed, and GPU memory usage.

Model
(Sampling Steps)

NIMA
Score ↑

CLIP
Score ↑

Inf. Time
(𝜇 (±𝜎))

Memory
Footprint

SDXL-Turbo [28]
(4 steps)

5.405 33.59 0.616 s
(±0.071)

9.51 GB

SD-Turbo [27]
(1 step)

5.292 33.34 0.176 s
(±0.018)

4.64 GB

aMUSEd [17]
(12 steps)

5.024 30.09 0.489 s
(±0.047)

3.75 GB

TAESD [16]
(25 steps)

5.397 32.90 1.588 s
(±0.053)

3.48 GB

2.1 Constructing Text-to-Image Performance
Dataset

We first collect text-to-image performance dataset by generating im-
ages using state-of-the-art models with diverse sets of prompts. We
evaluate the generation quality in two aspects: aesthetic quality and
text-image alignment. To measure aesthetic quality, we use NIMA
[10, 29], a learning-based framework that predicts whether an image
is visually attractive or with good technical quality. Additionally,
we calculate CLIP score [7] to measure text-image alignment using
OpenCLIP ViT-g/14. To minimize the effect of randomness on im-
age synthesis, we generate three images per prompt and compute
the average quality. All models generate images of size 512 × 512.
The machine used in this experiment has a GeForce RTX 2080 Ti
GPU and an Intel i7-8700K CPU with 16 GB of RAM.

2.1.1 Evaluation Benchmarks. We build a set of evaluation bench-
marks with 50k prompts from five different prompt datasets each
with its distinctive features as shown in Table 1. We use the COCO
validation set (MS-COCO), the standard dataset for evaluating cross-
modal tasks [13, 14, 24, 33], with LN-COCO, the COCO portion of
the Localized Narrative dataset that consists of longer, detailed
descriptions of MS-COCO’s reference images. We use all prompts
in LN-COCO and randomly draw 31,427 prompts from MS-COCO.

In addition to MS/LN-COCO, of which descriptions are generally
limited to common scenes and objects, we use some more challeng-
ing sets of prompts. DrawBench and PartiPrompts are designed to
test different model capabilities across a range of challenging as-
pects such as handling complex, abstract prompts. Meanwhile, Dif-
fusionDB consists of user-generated prompts collected by scraping
prompt-image pairs. We use all prompts from DrawBench and Par-
tiPrompts and randomly sample 8,168 prompts from DiffusionDB.

2.1.2 Text-to-Image Models. We select four state-of-the-art models
by jointly considering their performance as shown in Table 2. SDXL-
Turbo and SD-Turbo are each distilled version of Stable Diffusion XL
(SDXL) 1.0 and Stable Diffusion v2.1 (SD2.1), trained with adversar-
ial diffusion distillation [26] so as to preserve its original capability
with reduced model size and inference time. aMUSEd is a light-
weight masked image model that also features sub-second image
generation. TAESD is based on SD2.1 and uses a distilled variational
autoencoder. While with longer inference time, TAESD generates
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Figure 2: Proportion of each model generating images with
the highest quality in terms of NIMA score when given: Total
Benchmark (ALL), MS-COCO (MS), LN-COCO (LN), Draw-
Bench (DRAW), PartiPrompts (PP), and DiffusionDB (DIFF).

images of which quality is comparable to that of SDXL-Turbo and
SD-Turbo, and has the smallest memory footprint, making it a viable
option for cost-effective image generation.

2.2 Breakdown Analysis
We perform an in-depth analysis of the generation quality of each
text-to-image model in terms of each prompt to gain a deeper
insight into the quality variance induced by the difference in types
of tasks. After generating images and measuring their quality with
the evaluation benchmarks, we count the occurrences of eachmodel
producing images with the highest quality among other models for
the given prompt. Fig. 2 shows the results stratified by datasets.

When given the total benchmark, the proportion of each model
follows the results on the overall performance shown in Table 2,
with SDXL-Turbo and TAESD accounting for 35.34% and 33.54%
of generating best cases, respectively. SDXL-Turbo even reaches
46.46% when with prompts from DiffusionDB. However, we observe
that this trend does not always hold. When given prompts from
MS/LN-COCO, TAESD outperforms SDXL-Turbo, generating the
highest-quality images 10.38% and 4.48% more frequently with
MS/LN-COCO, respectively. We also note that there are quite a few
cases where aMUSEd plays a role in generating quality images, with
its proportion of generating best cases ranging from 6.28% (LN) to
11.12% (DIFF) and 15.69% (PP). This stratification over datasets, i.e.,
type of tasks, uncovers that there are certain tasks that each model
excels at, as each set of prompts differs in its linguistic features,
such as the vocabulary used or the length of prompts.

3 Learning Quality Variance for Cost-Effective
Model Selection

Motivated by our observations on the variability in generation
quality, we propose a novel approach that learns to select the best
model based on the linguistic features of input prompts.

3.1 Framework Overview
The overall architecture of our proposed approach is depicted in
Fig. 3. During the offline phase, we run performance tests using a
set of evaluation benchmarks to measure the generation quality of
each model for the given prompt. As shown in the samples in Fig. 3,
generated images may be either low in fidelity (i.e., less aesthetically
appealing) or misaligned with the user’s request (e.g., absence of

Figure 3: The architecture overview of our proposed approach
for cost-effective text-to-image generation.

the lazy dog). Therefore, as discussed in Sec. 2.1, we evaluate the
generation quality in terms of both aesthetic quality and text-image
alignment to jointly consider these metrics in selecting the best-
performing model. After dataset collection, based on the pairs of
text prompts and the resulting quality measurements, we train a
quality prediction model that predicts the best-performing model
for the given prompt based on its linguistic features. The cost of
each generation model can be defined by AI service providers, e.g.,
via API pricing. In this work, we set the cost of each model based
on its inference time and memory footprint (cf. Sec. 4.2). During
the online phase, for the series of incoming requests, our prediction
model assigns each generation request to the selected text-to-image
model, aiming to maximize total generation quality at a lower cost.

3.2 Quality Prediction Model
We formulate the task of prompt-level quality prediction as a classi-
fication problem of predicting which model will generate an image
with the highest quality based on the given prompt.

Based on the performance dataset collected with 𝑃𝐵 , a set of
benchmark prompts, and𝑀 = {𝑀1, . . . , 𝑀𝑗 }, a set of text-to-image
models each with its own capabilities, the best-performing model
𝑀𝑦 for a text prompt 𝑃𝐵𝑥 is defined as:

𝑦 = argmax
𝑚∈{1, ..., 𝑗 }

𝑄 (𝑀𝑚 (𝑃𝐵𝑥 )) (1)

where 𝑄 denotes the generation quality. Using cross-entropy loss
𝑙 (·), the quality prediction model 𝐹 (·) is trained to minimize:∑︁

𝑃𝐵
𝑥

𝑙 (𝐹 (𝑃𝐵𝑥 ), 𝑀𝑦) (2)

After learning the relationship between the linguistic features
of input prompt and its resulting quality, for a set of generation
requests 𝑃𝑅 = {𝑃1, . . . , 𝑃𝑖 }, each request 𝑃𝑅𝑥 is assigned to𝑀𝑦̂ :

𝑀𝑦̂ = 𝐹 (𝑃𝑅𝑥 ) (3)

which is the most suitable model that is predicted to generate an
image of the highest quality with 𝑃𝑅𝑥 among𝑀 .

4 Evaluation Results
This section presents the results of our evaluation. Using the dataset
collected as discussed in Sec. 2.1, we randomly split the entire
dataset into a ratio of 8:1:1, each for the training, validation, and test
set, respectively. After training the quality prediction model using
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Figure 4: Prediction performance of our CLIP-based model
with different quality metrics.

the training/validation set, we evaluate its prediction performance
and the cost-effectiveness of our approach based on the test set.

4.1 Prediction Performance
Our quality prediction model consists of a CLIP text encoder with a
classification head on top. We opt to use CLIP as it shares common
features with other text encoders used in text-to-image models [17,
18, 25, 30] to extract embeddings from input prompts, thus suitable
than other models such as Long Short-Term Memory (LSTM) [9]
or DistilBERT [31]. We choose ViT-B/16 as the CLIP model.

In addition to NIMA score and CLIP score, we use Mixed score
to jointly consider the two metrics in selecting the best-performing
model for each prompt. We apply min-max normalization to each
measured result so that both scores are on the same scale, then
compute the sum of normalized scores. The model is trained for 10
epochs using AdamW optimizer and a learning rate of 6.4 × 10−6.

As shown in Fig. 4, we can observe that regardless of the quality
metric, our CLIP-based model can find the model that generates
an image with the highest quality with more than 41% accuracy.
Using NIMA score as a quality metric leads to the highest accuracy
(44.26%) and precision (41.96%), while using CLIP score leads to the
highest recall (42.04%). Although using Mixed score shows similar
results overall, it results in lower performance than using a single
metric as selection criteria, with the lowest F1-score at 38.59%. We
will discuss more about this result in the following Sec. 4.2.

We also note that finding the best-performing model is not an
all-or-nothing affair. A sub-optimal selection may still be of value in
cases generating images with comparable quality or at a lower cost.
Indeed, when using Mixed score, we observe that 51.53% of those
sub-optimal selections generate images with the second-highest
quality, taking part in the overall quality enhancement.

4.2 Cost Effectiveness
We compare our approach with the following strategies by evaluat-
ing the average generation quality and the total cost.

• Oracle: The optimal assignment on the ground-truth data by
always selecting the model with the highest quality outcome.

• Single-model: Assigning a single, fixed model for every gen-
eration request. We evaluate this strategy with each available
model in our experiment.

• CEMS: Our approach for Cost-Effective Model Selection.

Table 3: The results of average quality and total cost obtained
when applying each model selection strategy on the test set
with NIMA, CLIP, and Mixed score as selection criteria. †
refers to our proposed approach.

Strategy NIMA Score CLIP Score Mixed Score
NIMA ↑ Cost ↓ CLIP ↑ Cost ↓ NIMA ↑ CLIP ↑ Cost ↓

Oracle 5.625 0.3876 35.16 0.3461 5.562 34.47 0.3864
SDXL-Turbo 5.405 0.5133 33.66 0.5133 5.405 33.66 0.5133
SD-Turbo 5.303 0.0733 33.40 0.0733 5.303 33.40 0.0733
aMUSEd 5.034 0.1630 30.13 0.1630 5.034 30.13 0.1630
TAESD 5.401 0.5293 32.92 0.5293 5.401 32.92 0.5293
CEMS † 5.462 0.3833 33.75 0.3476 5.434 33.60 0.3586

Motivated by the pricing model of serverless computing [1], we
set the cost of each generation request as follows:

Inference Time (s)×⌈Memory Footprint (GB)⌉×0.0000166667 (4)

For the inference time of each model, we use the mean value as it
shows a minor variance of less than 0.1 s (Table 2).

Table 3 shows the details of the results. When compared with
SDXL-Turbo, the model with the highest average performance, our
approach reduces the total cost by 29.25% on average while achiev-
ing higher generation quality in almost all cases, with its largest
reduction of 32.28% using CLIP score as selection criteria. Even
when compared with the Oracle, albeit lower in average quality
than the optimal assignment, our approach costs less when using
NIMA score or Mixed score as selection criteria, demonstrating its
cost-effectiveness. It is noteworthy that this is by virtue of utiliz-
ing inexpensive models: SD-Turbo or aMUSEd, that can generate
images of similar caliber but at a considerably lower cost.

Similar to the results in Fig. 4, using Mixed score results in a
minor drop in average quality both for our approach and the Oracle.
We attribute this result to the non-linear relationship between
NIMA score and CLIP score, with a Pearson correlation of 0.1883.
Addressing this challenge will be explored in our future work.

5 Conclusion
In this paper, we studied the relationship between the generation
quality of text-to-image models and the linguistic features of input
prompts. We showed diverse types of quality variance induced by
varieties in text prompts and proposed a novel approach that selects
the best-performing model for each generation request based on
quality prediction. The experimental results demonstrated the cost-
effectiveness of our approach, reducing total generation cost by up
to 32.28% while resulting in quality outcomes that are on par with
utilizing a single model of the highest average performance.
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