Learning Prompt-Level Quality Variance for Cost-Effective Text-to-Image Generation

Dongkeun Lee and Wonjun Lee

Korea University, Seoul, Republic of Korea

Key Contributions

- **1** First to utilize quality variance induced by difference in types of prompts to enhance **cost-effectiveness** in text-to-image generation
- 2 Empirical analysis on **inter-model** and **intra-model** quality variance according to the linguistic features of input prompts
- 3 A novel approach: Cost-Effective Model Selection
- \checkmark Select the best-performing model for each prompt based on its linguistic features
- ✓ Reduce total generation cost by **29.25**% with comparable or even higher quality outcomes

Motivation

- Text-to-image generation is a multivariable process
- 1 Model properties and training data \rightarrow *Inter-model* quality variance
- 2 Linguistic features of input prompts \rightarrow *Intra-model* quality variance
- No single model excels at handling all types of input prompts \checkmark Previous efforts \rightarrow Enhance the model itself or reformulate prompts
 - \checkmark Instead, select the best-performing model based on quality prediction

The Proposed Approach

Framework Overview

- ✓ Run performance tests and train a quality prediction model (**Offline Phase**)
 - Evaluate generation quality in terms of both **aesthetic quality** and **text-image alignment**
 - Jointly consider these metrics in selecting the best-performing model
- \checkmark Assign each generation request to the most suitable model (**Online Phase**)
 - Maximize total generation quality at a lower cost \rightarrow Increase cost effectiveness
- \checkmark Cost of generation request depends on the pricing model (e.g., API pricing)
 - We set the cost of each model based on its inference speed and memory footprint

Problem Definition

Prompt-Level Quality Prediction

- $\checkmark\,$ Formulate the task as a classification problem
- ✓ Predict which model will generate an image with the **highest quality** based on the linguistic features of **input prompts**
- 1 Set the best-performing model M_y for a benchmark prompt P_x^B as:

$$y = \underset{m \in \{1, ..., j\}}{\operatorname{arg\,max}} Q(M_m(P_x^B))$$

² Train the quality prediction model $F(\cdot)$ to minimize:

$$\sum_{P_x^B} l(F(P_x^B), M_y)$$

³ For generation requests $P^R = \{P_1, \ldots, P_i\}$, assign each request P_x^R to $M_{\hat{y}}$:

$M_{\hat{y}} = F(P_x^R)$

Constructing Text-to-Image Performance Dataset

Experimental Setup

- ✓ An Intel i7-8700K CPU with GeForce RTX 2080 Ti GPU
- ✓ All models generate images of size 512×512
- ✓ CLIP score measured using OpenCLIP ViT-g/14

Number of	Number of Words / Prompt				
Prompts	Min.	Max.	Avg. $(\mu(\pm\sigma))$		
31,427	6	45	10.46 (±2.41)		
8,573	6	181	40.45 (±18.75)		
200	1	51	11.68 (±9.62)		
1,632	1	67	9.12 (±7.34)		
8,168	1	217	24.31 (±16.10)		
	Number of Prompts 31,427 8,573 200 1,632 8,168	Number of PromptsNum Min.31,42768,573620011,63218,1681	Number of PromptsNumber of V31,4276458,57361812001511,6321678,1681217		

Evaluation Benchmarks

Performance Comparison between Text-to-Image Models

Model (Sampling Steps)	NIMA Score ↑	CLIP Score ↑	Inf. Time $(\mu(\pm\sigma))$	Memory Footprint
SDXL-Turbo (4 steps)	5.405	33.59	0.616 s (±0.071)	9.51 GB
SD-Turbo (1 step)	5.292	33.34	0.176 s (±0.018)	4.64 GB
aMUSEd (12 steps)	5.024	30.09	0.489 s (±0.047)	3.75 GB
TAESD (25 steps)	5.397	32.90	1.588 s (±0.053)	3.48 GB

Evaluation Result #1: Prediction Performance

- RQ #1: How well does our quality prediction model find the best-performing text-to-image model?
- \checkmark Implementation
 - CLIP text encoder (ViT-B/16) with a classification head on top
 - Trained for 10 epochs using AdamW optimizer and a learning rate of 6.4×10^{-6}
- \checkmark Lower performance when using Mixed score (mixture of NIMA & CLIP score)
 - Still, 51.53% of sub-optimal selections generate images with the second-highest quality

Evaluation Result #2: Cost Effectiveness

- RQ #2: How effective is our approach in reducing cost while preserving generation quality?
- \checkmark Pricing model (cost per generation request)

Inference Time (s) × $[Memory Footprint (GB)] \times 0.0000166667$ (4)

 $\checkmark\,$ Average quality and total cost of each model selection strategy

Strategy	NIMA Score		CLIP Score		Mixed Score		
	NIMA	$\uparrow Cost \downarrow$	CLIP 1	`Cost↓	NIMA 1	CLIP 1	`Cost↓
Oracle	5.625	0.3876	35.16	0.3461	5.562	34.47	0.3864
SDXL-Turbo	5.405	0.5133	33.66	0.5133	5.405	33.66	0.5133
SD-Turbo	5.303	0.0733	33.40	0.0733	5.303	33.40	0.0733
aMUSEd	5.034	0.1630	30.13	0.1630	5.034	30.13	0.1630
TAESD	5.401	0.5293	32.92	0.5293	5.401	32.92	0.5293
CEMS †	5.462	0.3833	33.75	0.3476	5.434	33.60	0.3586

(1)

(2)

- \checkmark Non-linear relationship between NIMA score and CLIP score
 - Pearson correlation coefficient of 0.1883

Contacts

Network and Security Research Lab. (NetLab)
Homepage: https://netlab.korea.ac.kr
Email:

Prof. Wonjun Lee (wlee@korea.ac.kr)
 Dongkeun Lee (dklee98@korea.ac.kr)

